The Language of the Nordwestblock

Rosemarie Lühr
Humboldt University of Berlin

According to Kuhn’s Nordwestblock hypothesis, the language of populations that settled the Northwest of Central Europe in the last centuries BC spoke neither Celtic nor Germanic, but instead a different Indo-European idiom. Kuiper even postulates a northern European substratum. The arguments brought up in favor of that are the large number of geminates, the variation between *p, *b, *pp, *bb, *ff, the occurrence of *mp at the root of the first syllable, and the words with initial *p (initial *b, the source of Germanic *p, is exceedingly rare in the Indo-European lexicon). However, before assigning strange sound patterns of Germanic to a substratum language, it is necessary to examine if the phonological phenomena in question could have emerged in Germanic itself. As I have previously shown in my monograph Expressivität und Lautgesetz im Germanischen, published in 1988, nasalized obstruent clusters with *p serve to convey sensory impressions, while the variation between *p, *b, *pp, *bb, *ff is partly phonetic, partly expressive. Furthermore, I will show that initial *p is due to a productive Germanic phonetic law. For all relevant words, I furthermore check whether there are factual circumstances that would necessitate borrowing.

Unrecorded extinct languages can sometimes be identified by traces that they leave in those languages on which sufficient information is available. Until now, lexical evidence has played a significant role in exploring those languages. However, the phonological evidence can be considered as well. Substrate influence can be seen in sound changes that have no obvious reason. In terms of phonology, the language of the so-called Nordwestblock deserves our attention. The proponent of this construct, Hans Kuhn, working with Hachmann et al. (1962), asserts that populations that settled the Northwest of Central Europe in the last centuries BC spoke neither Celtic nor Germanic, but instead a different, unknown Indo-European

idiom. Although this view has usually been rejected – if not entirely, then at least in many or most details2 –, Kuhn’s hypothesis is held in higher esteem nowadays.3 We are talking about a northern European substratum,4 which Kuiper (1995) has called the “language of geminates”.5 Indeed, in languages spoken in this area, in North Germanic and in the northern parts of the West Germanic region, a large number of geminates are documented.6 Kuiper further notes the variation between

\begin{equation}
(1) \ast p, \ast \beta, \ast pp, \ast bb, \ast ff, \ast mp
\end{equation}

at the end of the first syllable, arguing that words with these sound patterns reveal a non-Indo-European alternation and must therefore be substratum words in Germanic.7 Kuhn himself added words with initial \ast p to the heritage of the language of Nordwestblock speakers. As initial \ast b, the preform of Germanic \ast p, is extremely rare in the Indo-European lexicon,8 Germanic \ast p seems to be an unexpected sound in this position.

Before assigning aberrant sound patterns of Germanic to a substratum language, it is necessary to examine if the phonological phenomena in question could have emerged in the language that shows all these occurrences, \textit{i.e.} in Germanic itself. As I have already published on these issues, I will repeat

2Neumann 1971.
3Salmons 1992: 81ff.
4Boutkan 1998; Quak 2000: 134; Roberge 2010: 407f. Schrijver (2003: 221ff.) postulates a northern European substratum language to which belong not only the Northwest Germanic languages, but also Saami. A common phonological feature would be gemination. See further Schrijver 2009; 2011.
5Schrijver (2011: 217ff.) assumes that the Consonant Shift in the Rhineland ultimately goes back to language shift from Gallo-Romance to Germanic in the early Middle Ages. Gallo-Romance would be the point of origin.
6But geminates are also found in the more southerly Old High German.
7Schrijver 1997: 126.
8Probably, an assimilation of \ast b \to \ast m took place (Haider 1983: 86; Kümmel 2012: 304 with literature). For another solution cf. Weiss 2009. The \textit{mediae} in Indo-European were not simply voiced explosives. Several explanations are at hand: The Proto-Indo-European \textit{mediae} were glottalized stops, \textit{i.e.} ejectives or glottalized voiceless plosives (Gamkrelidze-Ivanov 1973), pre-glottalized lenis plosives (Kortlandt 1985) or glottalized injectives (Haider 1983).
the results of my investigations here. In my monograph *Expressivität und Lautgesetz im Germanischen*, published in 1988, I dealt with nasalized obstruent clusters and gemination in word-medial position. While my statements on gemination have been commented upon, most recently by Guus Kroonen, my studies on nasalization have not yet been taken into consideration. For this reason, I will address that here. The rise of initial \(*p \) will also be discussed in greater depth, because this sound reveals a productive Germanic sound change. It will be shown that the emergence of this sound is linked to the rise of geminates. The linkage of these sound changes is, to my mind, new. Finally, the semantics of Germanic words with initial \(*p \) will be studied more closely, as the question arises whether it really is an indicator of borrowing. Starting with gemination in word-medial position, we continue with nasalized obstruent clusters, then moving on to Germanic \(*p \) in initial position, to conclude with the semantics of words with this stop.

1. Gemination in word-medial position

In the Germanic languages, geminated obstruents are predominately found in the \(n \)-stems. Many of them show ablaut:

\[
(2) \,*xriðan-, *xritta- 'fever' (OHG rido, MHG ritze)^9 \\
*greðban-, *gruppa- 'basket' (OE greōfa, MDu, groppe(n) 'iron pan')^10
\]

Ablaut is an Indo-European derivational mechanism surviving in the Germanic languages until the Middle High German period. If the geminated obstruents came from the Nordwestblock language, the Germanic words with ablaut must have integrated a non-Germanic, foreign sound pattern into words that comply with the known rules of Indo-European word-formation. As this is exceedingly unlikely, Friedrich Kluge\(^{11}\) (1884) formulated a Proto-Germanic sound law to explain the origin of the Proto-Germanic doubled consonants

*kk, *tt, *pp as originating in the assimilation of n to a preceding voiced consonant, under the condition that the n was part of a suffix which was accented in ancestral Proto-Indo-European. Instead of nasal assimilation, however, I suggested gemination before a nasal that was consequently lost. A parallel sound development is found in Pāli, cf.

(3) Skt svapna- ‘sleep’ > Pāli soppa- < *svappna-\(^{12}\)

Murray & Vennemann (1983) convincingly analyze this sound development as “a means of eliminating the poorest syllable contacts”, a phenomenon that is also reflected in West-Germanic consonant gemination.\(^{13}\) The scale of “consonantal strength” is decisive here:

\begin{tabular}{cccc}
 voiceless fricatives & voiceless stops \\
 glides & liquids & nasals & voiced stops & stops
\end{tabular}

Cf. the structure formula in (4b):

(4b) VC\(_r\)#C\(_m\)V with r being stronger than m

Another motivation for consonant gemination by a resonant is presented by Denton in her study on the West Germanic Consonant Gemination (1999; cf. Denton 2003; Denton & Davis 2009). Her proposal is based on the fact that voice-onset time (VOT) may be affected in pre-resonant positions in syllables most often following the first stressed syllable. Thus, certain resonants would have the capability to strengthen preceding consonants by which a close coarticulation of the consonants with the following resonants would arise. Hereby, noisy or fortis coarticulations of consonant-resonant clusters would trigger gemination (Denton 2007), because the priming effect of existing geminates would provide an impetus for many of the stretched consonants to be interpreted as geminates. However, the Syllable Contact Law can be included (cf. Lühr 2015). The listener selected the

\(^{12}\)Skt chadman- > Pāli chaddan- ‘cover, veil’. Also gemination in front of liquids is documented in this language: Skt takra- ‘buttermilk’ > Pāli takka-

\(^{13}\)Hill (2009) is very critical of Preference Theory.
gemination interpretation, because in this way bad syllable contacts could be avoided (for the category of CHOICE, cf. Blevin’s 2004 Evolutionary Phonology framework).

However, while Middle Indic gemination results from nasals, liquids, and semivowels and West-Germanic gemination from liquids and semivowels, Proto-Germanic gemination arises only in front of n. The result was *pp, *tt, *kk. Similar to the Upper German shift of geminated voiced stops to geminated voiceless stops during the West-Germanic consonant gemination, the geminated voiced stops resulting from n-gemination became voiceless. As the Germanic lexicon demonstrates, there are hundreds of words with geminated voiceless stops or with one voiceless stop developed from generalizing the voiceless feature within the paradigm. We will come back to this leveling when dealing with the word for ‘plow’. Consequently, Kluge’s sound law in its revised version is undoubtedly valid.

Contrary to the claims of the Nordwestblock substratum language, doubled voiceless stops are an innovation in Germanic, as Proto-Indo-European lacked a length distinction for consonants.

However, only voiceless stops arise from gemination by gemination before the nasal n. Therefore, an explanation for

14 The objection is that in the case of n-gemination lengthening must have occurred in front of *m as well does not hold, because m and n can have different strength degrees. This is shown, for instance, by the sonority plateau with R[sonant]R[sonant]-onsets. The order of the nasals is mn, cf. formations of the root *$mneh_{2}$ (Greek μυνήσκω). Thus, on the scale of consonantal strength, m takes precedence over n, and as m is stronger than n, no gemination occurs by m, but only by n. Another objection against the assumption of true gemination is the following: Why are the voiced fricatives *b, *d, *g doubled, while the voiceless fricatives *f, *χ are not? (Kroonen 2011: 51). Also in this case, the syllable contact law offers a solution. If *f, *χ were doubled by n-gemination, *f, *χ were lenited in the syllable onset, cf. the Old High German rendering <fethdahaha> [feďdača] in Isidor. However, in contact with n an onset “lenited spirant + n” was weaker, i.e. more sonorous than the syllable coda. For this reason the n-gemination would not have applied. In the case of gemination of the voiced fricatives *b, *d, *g and the voiced stops *b, *d, *g, the voiced fricatives *b, *d, *g would have become voiced stops before *n first. In this scenario, n-gemination would only affect occlusives and leave fricatives untouched (Sergio Neri, p.c.), cf. Lühr 2014.
geminated voiceless fricatives and geminated voiced stops must be found. To start with geminated voiceless fricatives, words with such a sound pattern are extremely rare. As can be shown, the geminated fricatives have different origins. They originated partly in sound symbolism, partly in assimilation:

(5a) OE *pohha ‘burse’15 < *pʰχαn-
(5b) OE *mophpe ‘moth’, MLG mutte, MDu. mot(te) < *mɨχαn- < *mɨ-kan-16
OHG laddo, lat(t)o ‘asser’, ladda, latta ‘tignum’, MHG lat(t)e ‘lath’, ME lathe ‘lath’ < *laχαn-, -ön- < *la-kan-17
OHG chleddo, chletto, chledda, chletta, MDu. clesse, clisse ‘burdock’ < *kliʰχαn-, -ön- < *kli-kan-, -ön-18

Geminated voiced stops are more frequent than geminated fricatives. Kluge explained them by analogy:

(6) “Die doppelformen [ahd. chnabo und knapp- (aus knab-)] führten durch association zu zwei neuen formenpaaren: man bildete zu knabo eine neue geminationsform knabba oder zu der geminierten form knapp- im anschluss aus knabo eine form mit einfacher consonanz knapa: jenes ist das mhd. knappe, dies das ags. cnapa.” (1884: 176)19

But if this were the case, the assumed generalization of

(7a) *b : *bb instead of *p : pp (< *f/*b : pp)

would concern the spreading of voiced stops, that means, a leveling from the less marked to the more marked would occur,20 cf.

16Kroonen (2011: 219 f.) starts with a preform *mɨ-kan- with change to *mɨ-kan-. In the cluster *-k-*, the *k* was subsequently fricativized under the influence of the *f*; cf. OFri. krocha ‘scuttle’? (322).
19This view is accepted by Kroonen (2011: 78), concluding “that the paradigmatic interchange of *b* and *pp* [which] gave rise to *bb* und *p* fully predicts the allomorphic variation that is attested across the Germanic dialects.”
20To pronounce voiced stops, speakers have to make complex articulatory adjustments (e.g. advancing tongue roots, larynx lowering). They must send air to their closed mouth (Ohala & Riordan 1979; Ohala 1983). In fact, many languages disprefer voiced obstruents (e.g. Havaian, cf. Hayes & Steriade
Therefore, I suggested another explanation for the geminated voiced stops. As the meanings of words with geminated voiced stops fall into specific semantic fields, I suggest that in Germanic geminated voiced geminates originated in child phonology, and that adults, like nowadays, adopted words with this sound pattern into their own language.

(8) Icel krobbi ‘body of little children’, MLG kodde ‘piglet’, Nw. dial. tobba ‘mare; tiny, disheveled female being (besides MHG züpe ‘she-dog (bitch)’ < *tūbbôn)21, MLG sugge ‘little pig’,22, G Dappe, Tappe ‘paw’ (in Dappe the bb could also have an onomatopoetic function)

After having become established in the phonological system, geminated voiced stops could also be used to express other meanings such as words denoting soft, round, limp things.23

They could prompt an emotive function as with pejoratives:

(11) MUpG mugge ‘horse disease’, OHG scratto ‘larva, lar malus’, ON skabb ‘scabies’24

Finally small and protruding phenomenon are expressed:

(12a) LG hobbe ‘little hill’, OHG kratto (< *kraddan-) ‘basket’, MLG snebbe, snibbe ‘bill’, OE twigge ‘twig’, MLG tagge ‘twig’ (to Goth. tagl ‘hair’, EFri. tāk(e) ‘sting, thorn,

21 Fick & Torp 1911: 151.
22 Fick & Torp 1911: 442.
24 Fick & Torp 1911: 451.
The Language of the Nordwestblock

(25) OE sceagga ‘hair’, literally ‘being at the top of something’ (to Icelandic skagi ‘peninsular’)
(12b) MHG täpe ‘paw’ (*dēbban-), OHG hāccho, MHG hā(c)ke ‘hook’ (*hēggan-), OHG chrācco ‘uncinus, fuscina’ (*krēggan-), OHG chrāppo ‘aspidius, uncinus’ (*krēbban-), MHG snācke, snōcke ‘midge’ (*snēggan-) (Lühr 2015)

In this function the geminated voiced stops resemble Croatian words with diminutive suffixes. Croatian is one of the most productive Indo-European languages when it comes to diminutives:26

(13) grančica (‘small branch’ – ‘small part of a branch’), sanak (‘short sleep’), smiješak (‘light smile’), plamičak (‘light flame’)27

In conclusion, I assume that the geminated voiced stops in Germanic are instances of sound symbolism.

However, in Germanic the establishment of geminated voiced stops has a necessary precondition: Since this language had geminated voiceless stops caused by \(n \)-gemination, geminated voiced stops could emerge from it by stop weakening in intervocalic position.28 The sound symbolism here is organized in terms of the phonemic polarity strong vs. weak.29 Undoubtedly, the vocabulary employing these sounds existed besides neutral words, which are always the largest part of the vocabulary of a language.

To sum up: geminated voiceless stops, geminated voiceless fricatives and geminated voiced stops are Germanic creations. None of these geminates constitute traces of a substratum language.

26Diminuation in Croatian is expressed by special suffixes. For a comparison of diminutives and augmentatives in Dutch, German, and Polish and of diminutives in Russian and Swiss German, cf. Klimaszewska 1983, Kurt 2009.
27It depends on context whether the meaning small or pejorative is intended; cf. grmečak ‘small bush’ , ‘small scraggy bush’.
28Cf. Colantoni & Marinescu (2010) for such sound changes.
2. Nasalized obstruent clusters

Continuing to nasalized obstruent clusters, the recognition that the Germanic lexicon is organized in words with neutral connotation and words associated with a secondary meaning is decisive. Germanic words with non-inherited nasals belong to the second part of the lexicon. However, contrary to previous research literature, where the nasal was analyzed as a way to express feelings, emotions or affects, I argued that in Germanic this sound contributes to the communication of sensory impressions. It is a so-called phonestheme that is found in words denoting sounds and as a consequence of synaesthesia also in words denoting shininess, sparkling, brightness, and iteration of movements. Nasalization here is a wide-spread phenomenon emerging independently in several Indo-European languages and beyond. It is a matter of natural sound symbolism. Examples are:

(14) Lat. clangere 'to cry, resound', G klingen, Gr. κλάγγη 'sound'

(15a) words denoting sounds
PGmc. *trampō- ‘to stomp’ vs. *trappō- ‘trample’
Post-PGmc. *brankō- ‘to break’ vs. *brakō- ‘to crack’

(15b) words denoting glance, sparkle, brightness
PGmc. *blanka- ‘shiny’ vs. *blaka- ‘shiny’
PGmc. *brangō- ‘to shine’ vs. *bragō- ‘to shine, flicker, glimmer’

(15c) words denoting iteration of movement
PGmc. *gingē- ‘to move unsteadily’ vs. *gigō- ‘to waggle’
(15d) MLG vlunk ‘wing, windmill sail’ vs. MLG vlōgel ‘wing’

As in the past, Modern German nasalization of words denoting sounds is very common:

(15e) German manschen vs. matschen ‘to splash about’
German panschen ‘to splash about’ vs. patschen ‘to slap’

The words in (15e) are characterized by rhyming codas. A lot of such words with a nasal as phonestheme can be found:

(16a) words denoting sounds

*stampō- ‘to stamp’ - *strampō- ‘to stamp firmly’ -
*trampō- ‘to stamp one’s foot’ - *drampō- ‘to trample’

(16b) words denoting glance, sparkle, brightness

*blanka- ‘shiny’ - *sprankila- ‘spot on the skin’ – MLG, MDU spranke ‘spark, glimmer’

(16c) words denoting iteration of movements

*slinga- ‘to swing’ - *suinga- ‘to swing’

However, the presence of nasalized rhyming words as well as sound symbolism with the phonestheme n in Germanic contradicts the assumption of a substratum influence, because these phenomena are linguistic universals. They are often the result of a secondary association. As imitation in general is undoubtedly an initial stage in the early development of human language vocabulary, one can be sure that populations settling in the Nordwestblock area, long before Germanic speakers arrived there, used rhyming words and sound symbolism. The speakers of Germanic did not adopt these sound patterns; they could create them themselves, cf. also nasalized words for iteration of movement with the cluster *mp as mentioned in Kuiper’s list:

(17) Swiss German gampen ‘to juggle with a bench or chair’, plampen ‘to dandle, to swing loosely back and forth, to dangle’, schwampelen ‘to sway, to waver’
Low German gampeln ‘to juggle’, ampeln ‘to move hands and feet eagerly’, hampeln ‘to move back and forth’

3. Germanic *p in word initial position

Let us recall the phonological situation in Pre-Proto-Germanic: As the preform of Germanic *p, Indo-European *b, is very rare, a phonological gap arose in Germanic. This resulted in the absence of a phonemic contrast in parts of the phonological system: words that are allowed in the

31 Liberman 2005.
32 Moreno Cabrera 2012.
33 Also exclamations and interjections, present in all known human languages, are remnants of an early stage in vocal communication out of which human modern speech emerged (Swadesh 1971: 158).
phonological system of a language are absent. Whereas Germanic *t and *k are well-attested, *p is not. To dispense with this asymmetry, two phonological developments conspired. The possible loss of a so-called s-mobile\(^{35}\) in Proto-Indo-European as well as in the daughter languages evolved into a productive process creating doublets with and without s. The driving force behind this alternation, i.e. the s-loss and its rise as a productive mechanism is the fact that normally the sounds building the syllable onset also occur in the word onset. As Pulgram (1970) has shown, the same sequential constraints that operate at the beginning of a word should be operative at the beginning of a syllable, cf. the word medial position caused by n-gemination with the word initial position:

<table>
<thead>
<tr>
<th>(18)</th>
<th>Word medial position</th>
<th>Word initial position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coda</td>
<td>Onset</td>
<td>Onset</td>
</tr>
<tr>
<td>-k</td>
<td>k-</td>
<td>k-</td>
</tr>
<tr>
<td>-t</td>
<td>t-</td>
<td>t-</td>
</tr>
<tr>
<td>-p</td>
<td>p-</td>
<td></td>
</tr>
</tbody>
</table>

For reasons of symmetry, Germanic attempted to fill the p-gap in word initial position. This was done by reintroducing *p resulting from a sp-cluster after the removal of s.

As Southern (1999: 255) pointed out, this s-loss is maintained as the central mechanism behind s-mobile, both in Indo-European-inherited and with later Germanic-internal doublets. Structurally, this would represent archaism-retention with respect to the Indo-European proto-language, as well as innovative extension of applicability of movable-s alternations. The reasons are to be found in the markedness of sC[obstruent]-clusters. Hence, there emerged partial corrections and a confusion-driven s-loss and s-addition interchange. The remnants of this mechanism can be traced in every Indo-European daughter language, on both + and – s sides. However, only in Germanic and Balto-Slavic\(^{36}\) it survives

\(^{35}\)For such phenomena cf. Kutzelnigg 1979; Plank 1981.

\(^{36}\)Latv. kàudze ’haystack’ / skaudze ’haystack’; cf. MHG schocke ’haystack’
Latv. triūps ’beehive’ / struops ’beehive’; cf. MHG strump ’stump, log’
Lith. tarpa ’interval’ / Latv. starpa, starps ’interval’
OPr. spoayno ‘(beer-)foam’ / OCS pēņa ’foam’, Lat. pūmex, cf. Lith. spainė,
as a dynamic mechanism, with some vestiges in Greek, Celtic, and Indic.

In Germanic, manifestations before and after the First Sound Shift must be distinguished, cf.

(19) sk-
(19a) before the First Sound Shift
Germanic h- / sk-: OE hāwian ‘to look’ / OE scēawian ‘to look’
(19b) after the First Sound Shift
Germanic k- / sk-: Nw. dial. keiv ‘awry’ / ON skeifr ‘crooked, curved’

(20) st-
(20a) before the First Sound Shift
Germanic p- / st-: ON þjórr ‘bull, ox’ / Goth. stiur ‘bull, ox’
(20b) after the First Sound Shift
Germanic t- / st-: OHG zart ‘weak, frail, thin’ (< *tarda-), MLG tertlík ‘young salmon’ / MHG sterz ‘handle, stem, stalk’ (< *sterta-)

(21) sp-
before the First Sound Shift
Germanic f- / sp-: OHG fincho ‘finch’ / Swed. dial. spink ‘finch’

Moving on to the p- / sp- doublets that arose after the First Sound Shift, we will discuss the etymology of words with this onset. The data were compiled by Lühr & Matzel (1986)\(^\text{37}\). One striking example is the following:

(22) PGmc. *plega- ‘to care for’ > OE pléon ‘to risk, to dare’, OFri. plega, OS plegen, OHG phlegen ‘to stake, to risk, to vouch for, to protect, to care for, to be used to’ vs. PGmc. *spulg-e/d- > MHG spulgen ‘to use, to be used to’
cf. Schwabenspiegel (279,7) spulget getragen / pfliget zu tragenne\(^\text{38}\)

\(^{37}\)Southern (1999: 220 ff.) has taken over this list without mentioning the source.

\(^{38}\)Lühr & Matzel 1986: 265.
The underlying root *spelgh- is phonotactically sound, but not attested outside Germanic\(^{39}\).

Another example is:

These Germanic words are derived from the root Indo-European *(s)peh1- ‘to thrive’ (Ved. sp\(\text{ay}\)\(\text{atai}\) ‘shall get fat’, sph\(\text{iyate}\) ‘gets fat’)\(^{41}\)

4. The semantics of words with onset *p in Germanic

Now let us move on from phonetics to semantics in order to examine whether words with initial *p in Germanic can be borrowings from a substratum language. As borrowed terms generally enter a recipient language as a terminus technicus, the vocabulary with initial *p in Germanic must be examined for such words. Indeed, there are terms denoting objects associated with agriculture, for example:

\[(24)\] OHG plough ‘plow’, ON pallr ‘plank’, MHG pflock ‘stake’, OE plot(t) ‘patch of ground’

Starting with ON pallr ‘plank’, borrowing of a word with this meaning was not necessary in Germanic. A plank is not representative of an old cultural technique. In the daily life of the speakers of Germanic, there have always been planks. The Common Germanic word for ‘plank’ is:

\(^{39}\)This root does not appear in LIV. A possible preform *speldh- is mentioned under the root *(s)pel- ‘to split’ (OHG spaltan ‘to split’, ksl. ras-pla\(\text{to}\), -platiti ‘to separate’; LIV 577).

\(^{40}\)Lühr & Matzel 1986: 270.

\(^{41}\)LIV 584.
The Language of the Nordwestblock

(25) *burda- ‘board’ (Goth. fotu-baurd ‘footstool’, ON bòð ‘board, plank, table’, OE bord ‘board, table’, OFries. bord, OHG bòrt; cf. OHG bret ‘board, plank’ < Pre-Proto Germanic *bhṛH-tó- to Indo-European *bʰerH- ‘to hew with sharp tool’: ON berþa ‘to strike’)\(^{43}\)

In reality, ON pallr ‘plank’ is another example of s-loss in Germanic. It belongs to:

(26) ON spöl ‘pole’, ME spale ‘splinter’, derivations from Proto Germanic *spel- ‘to split’\(^{44}\)

ON fjöl ‘board, platform’ (< *pelā) shows s-loss prior to the First Sound Shift.

Additional examples of s-loss are MHG pflock ‘stake’ and OE pearroc ‘enclosure’:

(27) PGmc. *plukka(n)- (< *plukna-) > MHG pfloc (-ck-), pflocke, MLG phloc ‘peg’ vs. PGmc. *spelk-a/ō- > ON spjalk ‘skewer’, OE spelec, spilk ‘rail, splint’, MDu. spalke ‘wood fragment’\(^{45}\)

The etymology of *plukka(n)- has to be discussed together with the word for ‘plow’ (see below).

(28) OE pearroc ‘enclosure’ vs. OHG, OS sparro ‘post, beam’ (< *sper-)

Just as ON pallr, MHG pflock, and OE pearroc, Goth. peika- in peika-bagms ‘palmtree’ cannot be derived from a substrate language, because there is a variant with s-mobile in Germanic. We thus find:

\(^{43}\)LIV 80.

\(^{44}\)Lühr & Matzel 1986: 262f.

\(^{45}\)Lühr & Matzel 1986: 265.
This also applies to other words meaning ‘point’:

(30) PGmc. *pīla-* > OE, ME pīl ‘arrow’, ON pīla, OHG pīl, MHG pīl vs. PGmc. *spīl-a/ō(n-) > MLG spīl ‘pole, pointed stick’, ON spīl ‘piece of wood’, MHG spīl ‘spear-point’

Double forms exist also for OE plot ‘patch of land’:

The truly agricultural term ‘plow’ causes problems because a variant with s-mobile is lacking:

(32) PGmc. *plōga-* > ON plógr ‘plow, groove in a board’, OE plōh, OFri. plōch, MDu. ploech, OHG pfluog

The word is first attested as plauormati in Pliny’s *Naturalis Historia*. As *plōga-* also has the meaning ‘livelihood’ in OHG, it has been derived from the verb PGmc. *plegan- ‘to take care of’. If so, there must have been a semantic shift from ‘to be used to’ to ‘live’ to ‘to plow’. However, in view of the etymology of the inherited word for ‘plow’ in Germanic, which appears in ...

(33) Goth. hoha* (acc.sg. hohan) (cf. OHG huohilin ‘aratiuncula, small furrow’)

... a basic meaning ‘branch, twig’ is more plausible for *plōga- ‘plow’, cf. the cognates:

46 Lühr & Matzel 1986: 269; but cf. Holthausen 1934: 246: OE pīl is borrowed from lat. pīlum ‘arrow’.
48 Puhvel 1964.
49 Kroonen 2013: 398.
50 cf. EWA IV 1257f.
51 Kroonen 2013: 239.
Indeed, one early type of plow is a crooked stick with an iron tip attached, sometimes with rawhide, which simply scratched the ground. Assuming that PGmc. *plōga- also referred to such an item, a connection between PGmc. *plōga- with MHG pflock ‘stake’ seems plausible. To this formation, a s-mobile variant does exist:

However, in this case the divergent root final tectal phonemes PGmc. *g* and *k* have to be explained. As mentioned above, this root variation stems from n-gemination. The development was as follows: As a stake, twig, or wood fragment is a piece split off from a tree, a Pre-Proto-Germanic root *spelg*- ‘to split’ can be postulated that developed a variant *pelg-* by s-loss after the First Sound Shift. Next, a double *k* arose in the pre-form of MHG pflock, < *plukka- < *plug-no*-\footnote{*plugna- shows an analogical syllabification instead of **pulgn̩a- (< *(s)pl̩gh*-no-).} by n-gemination. The *k* was generalized in the s-mobile variant *spelk-a/ō*, but not in PGmc. *plōga- ‘plow’. The long *ō* here may be analogical to the aforementioned Indo-European word PGmc. *χōχa- ‘plow’. Consequently, the words for ‘plow’ would have been Reimformen.

\[(35b)\] MHG pflock, < *plukka- < *plug-no- with double *k by n-gemination
\[(35c)\] *plōga- ‘plow’ : *χōχa- ‘plow’

Even if this analysis of PGmc. *plōga- ‘plow’ may appear somewhat complicated, it is in agreement with the sound laws and analogies operating in Germanic.

All in all, the basic meanings of the words with initial PGmc. *p* do not suggest that these are lexical items adopted from a substratum language.

Conclusion

None of the discussed issues, geminated voiceless and voiced stops, geminated voiceless fricatives in word medial
position, nasalized obstruent clusters, and Germanic *p in initial position, need to be indicators of borrowing from a substratum language. Kuiper’s nasalized obstruent clusters are instances of natural sound symbolism being found also in *Reimformen. Geminated voiceless fricatives are mostly due to assimilation, and geminated voiceless stops are caused by a Proto-Germanic sound law, the n-gemination. Long voiced stops could emerge from geminated voiceless stops by stop weakening in intervocalic position\(^{54}\). These sounds appear in words denoting soft, round, limp, and small things as well as in pejoratives. N-gemination is also partly responsible for Germanic *p in initial position. Due to the productive process of s-loss and s-addition in the Germanic word onset, the gap that arose from the lack of *b in Indo-European was filled by *p, the variant of initial *sp. This procedure was favored by the trend towards harmonizing word onset and syllable onset. Furthermore, the meanings of the words with initial *p do not support the assumption of an underlying substratum language. Thus, if we want to detect a linguistic substratum underneath Germanic, we may have to look for features other than those discussed above.

Bibliography

Anderson Earl R.

Blevins, Juliette
2004 *Evolutionary Phonology: The Emergence of Sound Patterns*. Cambridge: Cambridge University Press.

Boutkan, Dirk. F. H.
1998 On the form of North European stratum words. *Historische Sprachforschung* 111/1, 102-123.

Colantoni, Laura & Marinescu, Irina

Denton, Jeannette Marshall
1999 Phonetic motivation for consonant gemination: Evidence from

\(^{54}\)Cf. Colantoni & Marinescu (2010) for such sound changes.
Greek, Romance, and Germanic. Proceedings of the XIVth International Congress of the Phonetic Sciences (ICPhS), 325-328. Berkeley, California : University of California, Department of Linguistics.

2007 West Germanic consonant gemination’s prosodic und phonetic originis. Presented at the 13th International Conference of Historical Linguistics, August 6th-11th, Montreal.

2013 The exceptional behavior of coronals in the High German Consonant Shift. GLAC (Society for Germanic Linguistics) 19, University of Buffalo.

Denton, Jeannette Marshall & Davis, Garry W.
2009 Palatal effects on the shift of geminates in pre-Old High German. GLAC (Society for Germanic Linguistics) 15, Banff, Alberta, Canada.

EWA = Lloyd, Albert L. & Lühr, Rosemarie

Fick, August & Torp, Alf

Gamqrelije, T’amaz V. & Ivanov, Vjačeslav Vs.

Haider, Hubert

Hawkins, John. A.

Hayes, Bruce & Steriade, Donca
2004 Introduction: The phonetic bases of phonological markedness, in Hayes, B., Kirchner, R. & Steriade, Donca (eds.) Phonetically Based Phonology, 1-33. Cambridge: Cambridge University Press.

Hill, Eugen

Holthausen, Ferdinand
Iverson, Gregory K. & Salmons, Joseph C

Klimaszewska, Zofia

Kluge, Friedrich
1884 Die germanische consonantendehnung. *Paul und Braune Beiträge zur Geschichte der deutschen Sprache und Literatur* 9, 149-186.

Kortlandt, Frederik H. H.

Kroonen, Guus

Kümmel, Martin Joachim

Kuhn, Hans

Kuiper, Franciscus Bernardus Jacobus.
1995 Gothic *bagms* and Old Icelandic *ylgr*. NOWELE 25,63-88.

Kurt, Sibylle
The Language of the Nordwestblock

Kutzelnigg, A.
1979 Die sprachliche Leistung des spirantischen Vorschlags.
Muttersprache 89, 116-140.

Liberman, Anatoly

LIV = Rix, Helmut u.a.

Lühr, Rosemarie

Lühr, Rosemarie & Matzel, Klaus

Meid, Wolfgang

Moreno Cabrera, Juan

Murray, Robert W. & Vennemann, Theo
Neumann, Günter

Ohala, John

Ohala, John & Riordan, C. J.

Plank, Frans

Puhvel, J.

Pulgram, Ernst

Quak, Arend

Quak, Arend & Boutkan, Dirk (eds.)

Roberge, Paul

Salmons, Joe

Schaffner, Stefan
Schrijver, Peter C. H.

2009 The expansion of non-Indo-European: the language(s) of the first agriculturalists in Southeast and Central Europe, in Hettrich, Heinrich (ed), Die Ausbreitung des Indogermanischen, Thesen aus Sprachwissenschaft, Archäologie und Genetik (in press). Würzburg, Germany.

Smith, Neilson Voyne

Southern Mark R.V.

Swadesh, Morris

De Vaan, Michiel

Weiss, Michael
2009 The Cao Bang Theory.